
2019-09-18

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math.

Prof. Hiren Patel, Ph.D.

hiren.patel@uwaterloo.ca dwharder@uwaterloo.ca

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

Logical operators

2
Logical operators

Outline

• In this lesson, we will:

– See the need for asking if more than one condition is satisfied

• The unit pulse function

– Describe the binary logical AND and OR operators

– Introduce truth tables

– Describe chaining numerous logical expressions

– Describe short-circuit evaluation

– Describe the unary logical negation (NOT)

3
Logical operators

Background

• We have seen six comparison operators

– Three complementary pairs

== != < >= > <=

• Problem:

– What if more than one condition is required?

– What if two conditions result in the same consequent?

– What if we require that a condition must be false?

4
Logical operators

The unit pulse

• Suppose we want to implement the function:

• This function has an integral (area under the curve) equal to 1

 

1

2
def

1

2

0 0

0

unit 1 0 and 1

1

0 1

x

x

x x x

x

x







  
 




2019-09-18

2

5
Logical operators

The unit pulse

• We could implement this function as follows:

double unit(double x);

double unit(double x) {

if (x < 0.0) {

return 0.0;

} else if (x == 0.0) {

return 0.5;

} else if (x < 1.0) {

return 1.0;

} else if (x == 1.0) {

return 0.5;

} else {

return 0.0;

}

}

 

1

2
def

1

2

0 0

0

unit 1 0 and 1

1

0 1

x

x

x x x

x

x







  
 




6
Logical operators

The unit pulse

• Can we implement this using two consequents and one alternative?

double unit(double x);

double unit(double x) {

if (Condition A) {

return 0.0;

} else if (Condition B) {

return 0.5;

} else {

return 1.0;

}

 

1

2
def

1

2

0 0

0

unit 1 0 and 1

1

0 1

x

x

x x x

x

x







  
 




7
Logical operators

• In English, we would simply say that the result is

0 if either x < 0 or x > 1,

0.5 if either x = 0 or x = 1, and

1 if both x > 0 and x < 1

Logical operators

8
Logical operators

• In C++, there are two logical binary operators

– They take two Boolean values (bool) and return a Boolean value

• The OR operator || returns true if either operands is true

• The AND operator && returns true if both operators are true

Logical operators

Consequent Conditions C++

0.0 or (x < 0) || (x > 1)

0.5 or (x == 0) || (x == 1)

1.0 and (x > 0) && (x < 1)

0x  1x 

0x  1x 

0x  1x 

2019-09-18

3

9
Logical operators

Logical operators

• Thus, we may implement the function as:

#include <cassert>

double unit(double x);

double unit(double x) {

if ((x < 0) || (x > 1)) {

return 0.0;

} else if ((0 == x) || (1 == x)) {

return 0.5;

} else {

assert((x > 0) && (x < 1));

return 1.0;

}

}

10
Logical operators

Maximum of three

• We can now implement the maximum-of-three function as follows:

double max(double x, double y, double z);

double max(double x, double y, double z) {

if ((x >= y) && (x >= z)) {

// 'x' is the maximum if it is greater than or equal

// to 'y' and greater than or equal to 'z'

return x;

} else if (y >= z) {

// Now, 'y' is the maximum if 'y' is greater than or

// equal to 'z'

// - if 'y' was not greater than 'x', the first

// condition would have been true

return y;

} else {

return z;

}

}

11
Logical operators

Truth tables

• We know that the logical OR operator || is true if either operand is
true

– It is false if both operands are false

• We know that the logical AND operator && is true if both operand
are true

– It is false if either operands is false

• To display this visually, we use a truth table

12
Logical operators

Truth tables

• In elementary school, you saw addition and multiplication tables:

– Given two operands, the table gave the result of the operation

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9 10

2 2 3 4 5 6 7 8 9 10 11

3 3 4 5 6 7 8 9 10 11 12

4 4 5 6 7 8 9 10 11 12 13

5 5 6 7 8 9 10 11 12 13 14

6 6 7 8 9 10 11 12 13 14 15

7 7 8 9 10 11 12 13 14 15 16

8 8 9 10 11 12 13 14 15 16 17

9 9 10 11 12 13 14 15 16 17 18

× 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9

2 0 2 4 6 8 10 12 14 16 18

3 0 3 6 9 12 15 18 21 24 27

4 0 4 8 12 16 20 24 28 32 36

5 0 5 10 15 20 25 30 35 40 45

6 0 6 12 18 24 30 36 42 48 54

7 0 7 14 21 28 35 42 49 56 63

8 0 8 16 24 32 40 48 56 64 72

9 0 9 18 27 36 45 54 63 72 81

2019-09-18

4

13
Logical operators

Truth tables

• With only two possible values of the operands, these truth tables are
much simpler:

&& true false

true true false

false false false

|| true false

true true true

false true false

14
Logical operators

Truth tables

• An alternate form is to consider all values of the operands:

x y x && y x || y

true true true true

true false false true

false false false false

false true false true

15
Logical operators

A reminder…

• Just to remind you, however, the result of a logical operator is
simply 0 or 1:

// All these print '1':

std::cout << ((3 < 4) && (4 < 5)) << std::endl;

std::cout << ((6 > 12) || (4 <= 5)) << std::endl;

std::cout << ((3 == 3) || (5 > 0)) << std::endl;

std::cout << ((3 <= 4) || (6 >= 15)) << std::endl;

16
Logical operators

Multiple conditions that may be true

• If you have four conditions, any of which need be true, parentheses
are not necessary:

if ((1st-cond) || (2nd-cond) || (3rd-cond) || (4th-cond)) {

// Do something...

}

• Like addition, logical OR is associative:
(a + b) + c == a + (b + c)

(a || b) || c == a || (b || c)

• If any one condition is true, then
(1st-cond) || (2nd-cond) || (3rd-cond) || (4th-cond)

evaluates to true
– If all conditions are false, the logical expression evaluates to false

2019-09-18

5

17
Logical operators

Multiple conditions that must be true

• If you have four conditions, all of which must be true, you need only
parenthesize the operands

if ((1st-cond) && (2nd-cond) && (3rd-cond) && (4th-cond)) {

// Do something...

}

• Like addition and multiplication,

both logical OR and logical AND are associative

• If all conditions are true, then
(1st-cond) && (2nd-cond) && (3rd-cond) && (4th-cond)

evaluates to true
– If even one condition is false, the logical expression evaluates to

false

18
Logical operators

Multiple conditions

• Note that you may combine both logical operators, but you must be
clear what you mean:

(x == 0) || ((x <= 2) && (x >= 1))

is very different from

((x == 0) || (x <= 2)) && (x >= 1)

– The first is true if x is 0 or x is in the closed interval [1, 2]

– The second is true only if x is in the closed interval [1, 2]

• If you leave it as

(x == 0) || (x <= 2) && (x >= 1)

the compiler will decide, and programmers will be left guessing

19
Logical operators

Short-circuit evaluation

• Consider these logical expressions:

(x < -10) || (x > 10)

(x < -10) || ((x > -1) && (x < 1)) || (x > 10)

• Suppose that 'x' has the value -100

– The first comparison operation returns true

– Is there is any reason to even bother testing the others?

• No: the result of true || any-other-conditionsmust be true

– This is referred to as short-circuit evaluation

20
Logical operators

Short-circuit evaluation

• Suppose now that 'x' has the value 0:

(x < -10) || (x > 10)

(x < -10) || ((x > -1) && (x < 1)) || (x > 10)

• The first condition is false, and

– In the first example, (x > 10) is false and it is the last condition, so
the expression is false

– In the second example, ((x > -1) && (x < 1)) is true, so the entire
logical expression is true

• There is no need at this point to evaluate (x > 10)

• Even though it is false, the entire expression is still true

2019-09-18

6

21
Logical operators

Short-circuit evaluation

• Similarly, consider

(x > -10) && (x < 10)

(x > -10) && ((x < -1) || (x > 1)) && (x < 10)

• Suppose that 'x' has the value -100

– The first comparison operation returns false

– Is there any reason to even bother testing the others?

• No: the result of false && any-other-conditionsmust be false

22
Logical operators

Short-circuit evaluation

• Suppose now that 'x' has the value 0:

(x > -10) && (x < 10)

(x > -10) && ((x < -1) || (x > 1)) && (x < 10)

• The first condition is true, and

– In the first example, (x < 10) is true and it is the last condition, so
the expression is true

– In the second example, ((x < -1) || (x > 1)) is false, so the entire
logical expression is false

• There is no need at this point to evaluate (x < 10)

• Even though it is true, the entire expression is still false

23
Logical operators

Short-circuit evaluation

• These functions have equivalent logical expressions:
int f(int x) {

if (((x >= -1) && (x <= 1)) || (x > 10) || (x < -10)) {

return -1;

} else {

return 1;

}

}

int g(int x) {

if ((x < -10) || (x > 10) || ((x <= 1) && (x >= -1))) {

return -1;

} else {

return 1;

}

}

• When do they stop evaluating when the argument passed is:

-12 -5 -1 7 15

24
Logical operators

Logical negation

• Suppose we want to print a message if some number is not divisible
by 13:

int print_good_luck(int n);

int print_good_luck(int n) {

if (is_divisible(n, 13)) {

// Do nothing

} else {

std::cout << "Good choice!" << std::endl;

}

}

2019-09-18

7

25
Logical operators

Logical negation

• Verbally, you would simply say: “If n is not divisible by 13, …”

• We can do this in C++ by using the unary logical NOT operator !:

int print_good_luck(int n);

int print_good_luck(int n) {

if (!is_divisible(n, 13)) {

std::cout << "Good choice!" << std::endl;

}

}

An alternative is:
if (is_divisible(n, 13) == false) {

26
Logical operators

Logical negation

• If a Boolean value is true, its negation is false, and vice versa

x !x

true false

false true

27
Logical operators

Logical negation

• The following Boolean-valued statements are equivalent1:

x is not equal to 1 It is not true that x is equal to 1

(x != 1) !(x == 1)

x is greater than 0 It is not true that x is less than or equal to 0

(x > 0) !(x <= 0)

x is between –1 and 1 It is not true that x is less than –1 or greater

than 1

(x >= -1) && (x <= 1) !((x < -1) || (x > 1))

x – y when divided by 2 has a It is not true that x – y when divided by 2

remainder of 0 has a remainder of 1

((x - y) % 2) == 0 !(((x - y) % 2) == 1)

1If the operands are the same, the result is the same.

28
Logical operators

Logical negation

• The behavior of these two conditional statements are equivalent:

if (some-condition) {

// Do something

} else {

// Do something completely different

}

if (!some-condition) {

// Do something completely different

} else {

// Do something

}

2019-09-18

8

29
Logical operators

Logical negation

• Once again, all the unary logical NOT operator does is change the
value of true (that is, 1) to false (0) and vice versa

void check(int n) {

std::cout << !(n == 0) << std::endl;

std::cout << (n != 0) << std::endl;

std::cout << !(n >= 1) << std::endl;

std::cout << (n < 1) << std::endl;

std::cout << !((n == 0) || (n >= 1)) << std::endl;

std::cout << ((n != 0) && (n < 1)) << std::endl;

}

30
Logical operators

Decision making

• Why do we include these operators?

– The literal logical values true and false together with operations such

as AND, OR and NOT are sufficient to define Boolean logic

– In 1938, Claude Shannon wrote his master’s thesis where he
demonstrated that the behavior of relays can be modelled by Boolean
logic

• A relay is a switch that can be turned on or off

– Usually with an electromagnet

• Transistors are excellent solid-state approximations of switches

– Their behavior can still be modelled by Boolean logic

31
Logical operators

One final aside…

• In Claude Shannon’s master’s thesis, written in 1937 when he was
21-years old, he demonstrated that Boolean algebra was sufficient to
construct any logical, numerical relationship

– He founded information theory

– Shannon's maxim: “The enemy knows the system”

– He also invented the ultimate machine:

32
Logical operators

Summary

• Following this lesson, you now:

– Understand that two or more conditions can be chained together

• With a logical AND (&&), all must be true for the result to be true

• With a logical OR (||), one must be true for the result to be true

– Are familiarized with truth tables

– Understand the idea of short-circuit evaluation

• As soon as one condition is false in a chain of logical ANDs, we’re done: the
result must be false

• As soon as one condition is true in a chain of logical ORs, we’re done: the
result must be true

– Understand that logical negation switches between true and false

2019-09-18

9

33
Logical operators

References

[1] No references?

34
Logical operators

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

35
Logical operators

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

