

- In this lesson, we will:
- See the need for asking if more than one condition is satisfied
- The unit pulse function
- Describe the binary logical AND and OR operators
- Introduce truth tables
- Describe chaining numerous logical expressions
- Describe short-circuit evaluation
- Describe the unary logical negation (nот)

- We have seen six comparison operators
- Three complementary pairs

```
\(==\) !=
```

- Problem:
- What if more than one condition is required?
- What if two conditions result in the same consequent?
- What if we require that a condition must be false?

- Suppose we want to implement the function:

$$
\operatorname{unit}(x) \stackrel{\text { def }}{=}\left\{\begin{array}{cc}
0 & x<0 \\
\frac{1}{2} & x=0 \\
1 & x>0 \text { and } x<1 \\
\frac{1}{2} & x=1 \\
0 & x>1
\end{array}\right.
$$

- This function has an integral (area under the curve) equal to 1

 The unit pulse

- We could implement this function as follows:

```
double unit( double x );
double unit( double x ) {
        if (x<0.0)
        } else if ( x == 0.0 ) {
        return 0.5;
        } else if ( x < 1.0 ) {
            return 1.0;
            } else if ( x == 1.0 ) {
                return 0.5;
            } else {
            return 0.0;
    }
}
```

$$
\operatorname{unit}(x) \stackrel{\text { def }}{=}\left\{\begin{array}{cc}
0 & x<0 \\
\frac{1}{2} & x=0 \\
1 & x>0 \text { and } x<1 \\
\frac{1}{2} & x=1 \\
0 & x>1
\end{array}\right.
$$

- In English, we would simply say that the result is

0 if either $x<0$ or $x>1$,
0.5 if either $x=0$ or $x=1$, and

1 if both $x>0$ and $x<1$

 The unit pulse

- Can we implement this using two consequents and one alternative? double unit (double x);

```
double unit( double x ) {
    if ( Condition A ) {
        return 0.0;
    } else if ( Condition B ) {
        return 0.5;
    } else {
        return 1.0; }\quad[\begin{array}{ll}{\frac{1}{2}}&{0}\\{0}&{x>1}
    }
```

1009

Logical operators

- In C++, there are two logical binary operators
- They take two Boolean values (bool) and return a Boolean value
- The OR operator || returns true if either operands is true
- The and operator $\& \&$ returns true if both operators are true

Consequent	Conditions	C ++	
0.0	$x<0$ or $x>1$	$(\mathrm{x}<0) \\|(\mathrm{x}>1)$	
0.5	$x=0$ or $x=1$	$(\mathrm{x}=0) \\|(\mathrm{x}==1)$	
1.0	$x>0$ and $x<1$	$(\mathrm{x}>0) \& \&(\mathrm{x}<1)$	

 Logical operators

- Thus, we may implement the function as:
\#include <cassert>
double unit(double x);
double unit (double x) \{
if ($(x<0) \|(x>1))$
return 0.0;
\} else if ($(0==x)|\mid(1==x))$ \{ return 0.5;
\} else \{
assert ($(x>0) \& \&(x<1))$;
return 1.0;
$\}$
\}

 Maximum of three

- We can now implement the maximum-of-three function as follows:

```
double max(double x, double y, double z);
double max( double x, double y, double z )
    if ((x>>y)&& (x>=z)) {
            me maximum if it is greater than or equal
            // to ' }y\mathrm{ ' and greater than or equal to ' }z\mathrm{ '
            else if ( }y>=z)
            // Now, ' }y\mathrm{ ' is the maximum if ' }\textrm{y}\mathrm{ ' is greater than or
            // equal to 'z'
            // - if ' ' ' was not greater than ' }x\mathrm{ ', the first
            ceturn y;
        else {
            return z;
        }
}
```


- We know that the logical or operator || is true if either operand is true
- It is false if both operands are false
- We know that the logical AND operator $\& \&$ is true if both operand are true
- It is false if either operands is false
- To display this visually, we use a truth table

- In elementary school, you saw addition and multiplication tables: - Given two operands, the table gave the result of the operation

- With only two possible values of the operands, these truth tables are much simpler:

$\& \&$	true	false
true	true	false
false	false	false

$\\|$	true	false
true	true	true
false	true	false

 Truth tables

- An alternate form is to consider all values of the operands:

x	y	$x \& \& y$	$x \\| y$
true	true	true	true
true	false	false	true
false	false	false	false
false	true	false	true

- Just to remind you, however, the result of a logical operator is simply 0 or 1 :
// All these print '1':
std::cout << ((3 < 4) \&\& (4 < 5)) << std::endl; std::cout << ((6 > 12) || (4 <= 5)) << std::endl; std::cout << $((3==3)|\mid(5>0)) \ll ~ s t d:: e n d l ;$ std::cout << $((3<=4)|\mid(6>=15)) \ll ~ s t d:: e n d l ;$

 Multiple conditions that may be true

- If you have four conditions, any of which need be true, parentheses are not necessary:
if ((1st-cond) || (2nd-cond) || (3rd-cond) || (4th-cond)) \{ // Do something...
\}
- Like addition, logical OR is associative:

$$
\begin{aligned}
& (a+b)+c=a+(b+c) \\
& (a \| b)\|c=a\|(b|\mid c)
\end{aligned}
$$

- If any one condition is true, then
(1st-cond) || (2nd-cond) || (3rd-cond) || (4th-cond)
evaluates to true
- If all conditions are false, the logical expression evaluates to false
- If you have four conditions, all of which must be true, you need only parenthesize the operands
if ((1st-cond) \&\& (2nd-cond) \& (3rd-cond) \& (4th-cond)) \{
// Do something..
\}
- Like addition and multiplication,
both logical OR and logical AND are associative
- If all conditions are true, then
(1st-cond) \&\& (2nd-cond) \&\& (3rd-cond) \&\& (4th-cond)
evaluates to true
- If even one condition is false, the logical expression evaluates to false

图
 Short-circuit evaluation

- Consider these logical expressions:

$$
\begin{aligned}
& (x<-10) \|(x>10) \\
& (x<-10)\|((x>-1) \&(x<1))\|(x>10)
\end{aligned}
$$

- Suppose that ' x ' has the value -100
- The first comparison operation returns true
- Is there is any reason to even bother testing the others?
- No: the result of true \| any-other-conditions must be true
- This is referred to as short-circuit evaluation

 Multiple conditions

- Note that you may combine both logical operators, but you must be clear what you mean:

$$
(x==0) \|((x<=2) \& \&(x>=1))
$$

is very different from

$$
((x==0) \|(x<=2)) \& \&(x>=1)
$$

- The first is true if x is 0 or x is in the closed interval $[1,2]$
- The second is true only if x is in the closed interval [1,2]
- If you leave it as

$$
(x==0) \|(x<=2) \& \&(x>=1)
$$

the compiler will decide, and programmers will be left guessing

Short-circuit evaluation

- Suppose now that ' x ' has the value 0 :
$(x<-10) \|(x>10)$
$(x<-10)\|((x>-1) \& \&(x<1))\|(x>10)$
- The first condition is false, and
- In the first example, ($x>10$) is false and it is the last condition, so the expression is false
- In the second example, ((x > -1) \&\& $(x<1)$) is true, so the entire logical expression is true
-There is no need at this point to evaluate ($x>10$)
- Even though it is false, the entire expression is still true
- Similarly, consider
$(x>-10) \& \&(x<10)$
$(x>-10) \& \&((x<-1) \|(x>1)) \& \&(x<10)$
- Suppose that ' x ' has the value -100
- The first comparison operation returns false
- Is there any reason to even bother testing the others?
- No: the result of false \&\& any-other-conditions must be false

 Short-circuit evaluation

- These functions have equivalent logical expressions:
int $f($ int $x)$ if
if $(((x>=-1) \& \&(x<=1))\|(x>10)\|(x<-10))\{$
$\}$ else $\{$
return 1;
$\}^{\}}$
int g(int x) \{
if $((x<-19)\|(x>10)\|((x<=1) \& \&(x>-1)))$ \{
\} else $\left\{\begin{array}{c}\text { return -1; } \\ \text { in }\end{array}\right.$
\} else \{
\} return 1
\}
- When do they stop evaluating when the argument passed is:

$$
\begin{array}{lllll}
-12 & -5 & -1 & 7 & 15
\end{array}
$$

 Short-circuit evaluation

- Suppose now that ' x ' has the value 0 :
$(x>-10) \& \&(x<10)$
$(x>-10) \& \&((x<-1) \|(x>1)) \& \&(x<10)$
- The first condition is true, and
- In the first example, $(x<10)$ is true and it is the last condition, so the expression is true
- In the second example, $((x<-1) \|(x>1))$ is false, so the entire logical expression is false
- There is no need at this point to evaluate ($x<10$)
- Even though it is true, the entire expression is still false

Logical negation

- Suppose we want to print a message if some number is not divisible by 13
int print_good_luck(int n);
int print_good_luck(int n) \{
if (is_divisible($n, 13$)) \{
// Do nothing
\} else \{
std::cout << "Good choice!" << std::endl;
\}
\}

Logical negation miogical operators ${ }_{45}$!
 Logical negation

- Verbally, you would simply say: "If n is not divisible by $13, \ldots$,.."
- We can do this in C++ by using the unary logical not operator !:
int print_good_luck(int n);
int print_good_luck(int n) \{
if (!is_divisible(n, 13)) \{
std::cout << "Good choice!" << std::endl; \}
\}
An alternative is:
if (is_divisible(n, 13) == false) \{

 Logical negation

- If a Boolean value is true, its negation is false, and vice versa

Logical negation
 (중

- The following Boolean-valued statements are equivalent ${ }^{1}$:
x is not equal to $1 \quad$ It is not true that x is equal to 1

$$
(x!=1)
$$

$$
!(x==1)
$$

x is greater than 0
It is not true that x is less than or equal to 0

$$
(x>0)
$$

$$
!(x<=0)
$$

x is between -1 and 1
It is not true that x is less than -1 or greater than 1

$$
(x>=-1) \& \&(x<=1) \quad!((x<-1) \|(x>1))
$$

$x-y$ when divided by 2 has a It is not true that $x-y$ when divided by 2
remainder of $0 \quad$ has a remainder of 1

$$
((x-y) \% 2)=0 \quad!(((x-y) \% 2)==1)
$$

${ }^{1}$ If the operands are the same, the result is the same.

Logical negation

- The behavior of these two conditional statements are equivalent:

```
if ( some-condition ) {
        // Do something
} else {
        // Do something completely different
}
if ( !some-condition ) {
        // Do something completely different
} else {
        // Do something
}
```


Logical negation

- Once again, all the unary logical NOT operator does is change the value of true (that is, 1) to false (0) and vice versa

```
void check( int n ) {
    std::cout << !(n == 0) << std::endl;
    std::cout << (n != 0) << std::endl;
    std::cout << !(n >= 1) << std::endl;
    std::cout << (n < 1) << std::endl;
    std::cout << !((n == 0) || (n >= 1)) << std::endl;
    std::cout << ((n != 0) && (n < 1)) << std::endl;
}
```


A/ Logical operators ${ }_{31} /$

One final aside...

- In Claude Shannon's master's thesis, written in 1937 when he was 21-years old, he demonstrated that Boolean algebra was sufficient to construct any logical, numerical relationship
- He founded information theory
- Shannon's maxim: "The enemy knows the system"
- He also invented the ultimate machine:

 Decision making

- Why do we include these operators?
- The literal logical values true and false together with operations such as AND, OR and NOT are sufficient to define Boolean logic
- In 1938, Claude Shannon wrote his master's thesis where he demonstrated that the behavior of relays can be modelled by Boolean logic
- A relay is a switch that can be turned on or off
- Usually with an electromagnet
- Transistors are excellent solid-state approximations of switches
- Their behavior can still be modelled by Boolean logic
- Following this lesson, you now:
- Understand that two or more conditions can be chained together
- With a logical AND ((8)), all must be true for the result to be true
- With a logical or (||), one must be true for the result to be true
- Are familiarized with truth tables
- Understand the idea of short-circuit evaluation
- As soon as one condition is false in a chain of logical ANDs, we're done: the result must be false
- As soon as one condition is true in a chain of logical ors, we're done: the result must be true
- Understand that logical negation switches between true and false
[1] No references?

जresy

These slides were prepared using the Georgia typeface. Mathematical equations use Times New Roman, and source code is presented using Consolas.

The photographs of lilacs in bloom appearing on the title slide and accenting the top of each other slide were taken at the Royal Botanical Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see
https://www.rbg.ca/
for more information.

These slides are provided for the ECE 150 Fundamentals of Programming course taught at the University of Waterloo. The material in it reflects the authors' best judgment in light of the information available to them at the time of preparation. Any reliance on these course slides by any party for any other purpose are the responsibility of such parties. The authors accept no responsibility for damages, if any, suffered by any party as a result of decisions made or actions based on these course slides for any other purpose than that for which it was intended

